17th SINGAPORE SYMPOSIUM ON PAVEMENT TECHNOLOGY (SPT 2012)

25 May 2012 Engineering Auditorium, National University of Singapore, Singapore

Special Materials for Concrete Pavement Surface Repair and Maintenance

Zhang Yanli, Dr Xu Wenyu, Dr Wu Dong Qing

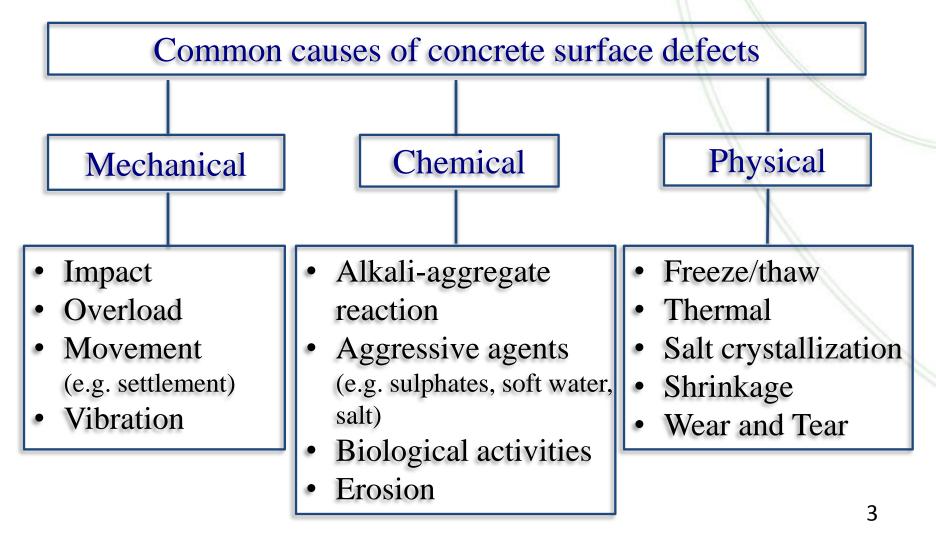
Chemilink Technologies Group, Singapore

Table of Contents

- **1. Introduction**
- 2. Common causes of concrete pavement surface defects
- **3.** Causes of concrete pavement surface repair failure
- 4. Concrete pavement surface repair failure process
- 5. Special concrete pavement surface repair mortar
- 6. Conclusions

1. Introduction

- □ Concrete pavements deteriorate over time, due to
 - \succ exposure to severe weather conditions,
 - excessive traffic loading
 - \succ thermal cracking of the concrete, etc.


□ Conventional concrete pavement repair practice - reconstruction

- \succ needs long time and costly
- \succ generates air pollution and noise
- ➤ causes traffic congestion
- \succ generates more wastes.
- Resurfacing is a practical way for most of the concrete pavement repair and maintenance, because
 - concrete pavement is still structurally sound
 - repair and maintenance are normally done when the defects are only at the surface.

2. Common Causes of Concrete Pavement Surface Defects

2.1 Common causes of concrete surface defects

2. Common Causes of Concrete Pavement Surface Defects 2.2 Main Causes of seaport concrete pavement defects Mechanical Cause: Physical and Chemical Cause: \blacktriangleright Wear and Tear > Thermal ► Impact > Shrinkage > Overload \succ Erosion

➢ Vibration

3. Causes of Concrete Pavement Surface Repair Failure

- 3.1 Mechanical Cause
 - ➢ Wear and Tear
 - ➢ Impact
 - ➤ Overload
 - Vibration

3. Causes of Concrete Pavement Surface Repair Failure

- 3.2 Repair Material Cause
- High early strength
 - \checkmark High modulus of elasticity
 - \checkmark Low flexibility and toughness
 - ✓ Low cracking resistance
 - ✓ Susceptible to fracturing from impact loads
- Low adhesion to substrates debond
- > Incompatibility with substrates

3. Causes of Concrete Pavement Surface Repair Failure

3.3 Application Cause

- Substrate surface preparation
- > Repairing method
- ➤ Curing
- ➤ Workmanship

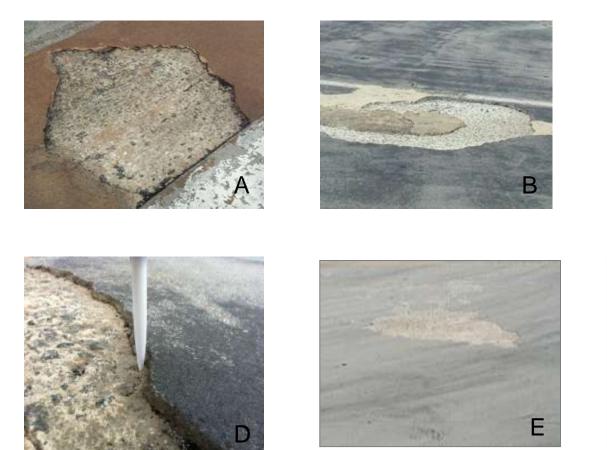
- 4.1 Local Debond
 - Caused By:
 - ≻Poor adhesion
 - ➢Incompatibility
 - ≻Wear and tear
 - ≻Impact and vibration

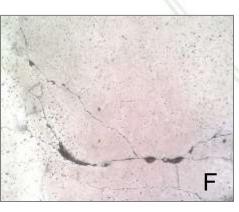
4.2 Crack

- Caused By:
- ≻Local Debond
- ≻Overload
- ≻Wear and tear
- ≻Impact and vibration
- Differential shrinkage
- ≻Thermal shock

- 4.3 Pop Out
 - Caused By:
 - ≻Cracks
 - ≻Overload
 - ≻Wear and tear
 - ≻Impact and vibration
 - Differential shrinkage
 - ≻Thermal shock

4.4 Debond and Crack in Surrounding Areas


- Caused By:
- ≻Wear and tear
- ≻Impact and vibration



4.5 Examples of Concrete Pavement Surface Repair Failure

3 months after application in heavy traffic areas

5.1 Requirements for Concrete Pavement Surface Repair Mortar

- ➢Good adhesion to substrate
- ≻Good compressive strength
- ≻Good flexural strength
- ➢Good skid resistance

As site closing time is limit, **short setting time** (High early strength) is also an important requirement.

5.2 Chemilink SS-132 – for concrete pavement surface rejuvenation

Features:

- \succ Two part product \rightarrow powder + liquid polymer
- > Specially designed for concrete pavement thin surface repair \rightarrow 3-10mm
- \succ Fast Setting \rightarrow open to traffic early
- \blacktriangleright High final strength (35-50MPa/28days) \rightarrow suitable for high loading situations
- \succ High bond strength \rightarrow not easy to de-bond
- ➢ High impact and crack resistance
- ➢ High abrasion and chemical resistance
- ➤ Good workability and easy to apply

5.2 Chemilink SS-132 – for concrete pavement surface rejuvenation

Typical Technical Data

Properties	Chemilink TM SS-132
Compressive Strength at 2 hours	8~15MPa
Compressive Strength at 4 hours	15~25MPa
Compressive Strength at 1 day	20~30MPa
Compressive Strength at 3 days	25~35MPa
Compressive Strength at 28 days	35~50MPa
Setting Time:	< 40 minutes

5.2 Chemilink SS-132 – for concrete pavement surface rejuvenation

Application

Substrate preparation

Brooming the surface

Finished wet surface

Finished dry surface

5.3 Chemilink SS-133

- for concrete pavement surface and patch repair/restoration

Features:

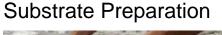
- \succ Two part product \rightarrow powder + liquid polymer
- Designed for 10mm<thickness<30mm concrete pavement surface repair</p>
- → High early strength (10-15MPa/2h)→ open to traffic early
- \blacktriangleright High final strength (35-50MPa/28days) \rightarrow suitable for high loading situations
- \succ High bond strength \rightarrow not easy to de-bond
- ➢ High impact and crack resistance
- ➢ High abrasion and chemical resistance

5.3 Chemilink SS-133

- for concrete pavement surface and patch repair/restoration

Typical Technical Data

Properties	Chemilink [™] SS-133
Compressive Strength at 2 hours	10~15MPa
Compressive Strength at 4 hours	15~25MPa
Compressive Strength at 1 day	20~30MPa
Compressive Strength at 3 days	25~35MPa
Compressive Strength at 28 days	35~50MPa
Setting Time:	< 40 minutes



5.3 Chemilink SS-133

- for concrete pavement surface and patch repair/restoration

Application

Finished Surface

5.4 Chemilink SS-123 – for deep hole or thicker layer

Features:

- > Designed for deep hole or thicker layer (>30mm) of concrete pavement repair
- High early strength (30~40MPa/1hour) \rightarrow open to traffic early
- \blacktriangleright High final strength (45-65MPa/28days) \rightarrow suitable for high loading situations
- ➢ High impact and crack resistance
- ➢ High abrasion and chemical resistance
- ➢ Good workability and easy to apply

5.4 Chemilink SS-123 – for deep hole or thicker layer

Typical Technical Data

Powder mixed with water only

Properties	Chemilink [™] SS-123
Compressive Strength at 1 hour	30~40MPa
Compressive Strength at 2 hours	35~45MPa
Compressive Strength at 4 hours	35~50MPa
Compressive Strength at 1 day	40~55MPa
Compressive Strength at 7 days	40~60MPa
Compressive Strength at 28 days	45~65MPa
Setting Time:	< 40 minutes

5.4 Chemilink SS-123 – for deep hole or thicker layer

Typical Technical Data

Powder mixed with water and aggregate(5-20mm), powder/aggregate = 1:1

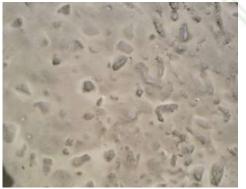
Properties	Chemilink [™] SS-123
Compressive Strength at 1 hour	40~50MPa
Compressive Strength at 2 hours	45~55MPa
Compressive Strength at 4 hours	45~60MPa
Compressive Strength at 1 day	60~75MPa
Compressive Strength at 7 days	60~80MPa
Compressive Strength at 28 days	65~85MPa
Setting Time:	< 40 minutes

5.4 Chemilink SS-123 – for deep hole or thicker layer

Application

Deep hole

Mixing powder with water


Add aggregate, mixing

Pour into deep hole

Finished surface(wet)

Finished surface(dry) 23

6. Conclusions

- 1. Concrete surface repair is a system, and the success of the repair is affected by many factors, like loading condition, environment, substrate preparation, performance of repair materials and workmanship
- 2. Chemilink has abilities to design and manufacture different repair materials based on their performance required
- 3. Based on different damage scenarios, Chemilink has developed a series of products for repair of concrete pavement surface.

Thank You for Your Attention!

