Invited Seminar of Chemilink Series Technologies on Green Technology & Innovation for Port Continuous Improvement, Penang Port Brainstorming Conference, 28th December 2011, Cool Point Hotel, Cameron Highlands, Malaysia.

Concrete Pavement Surface Repair

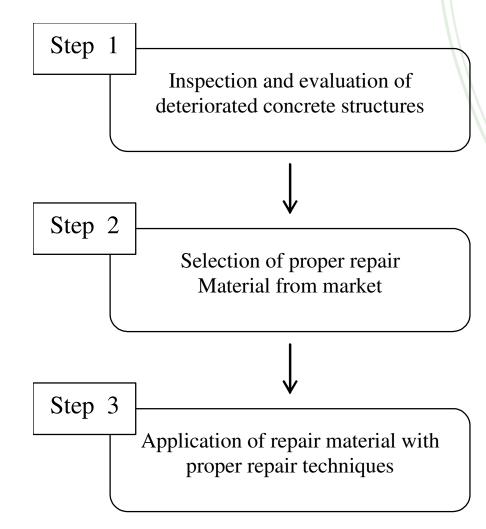
- For Seaport and Airport

Dr Xu Wenyu, Zhang YanLi and Dr Wu Dong Qing

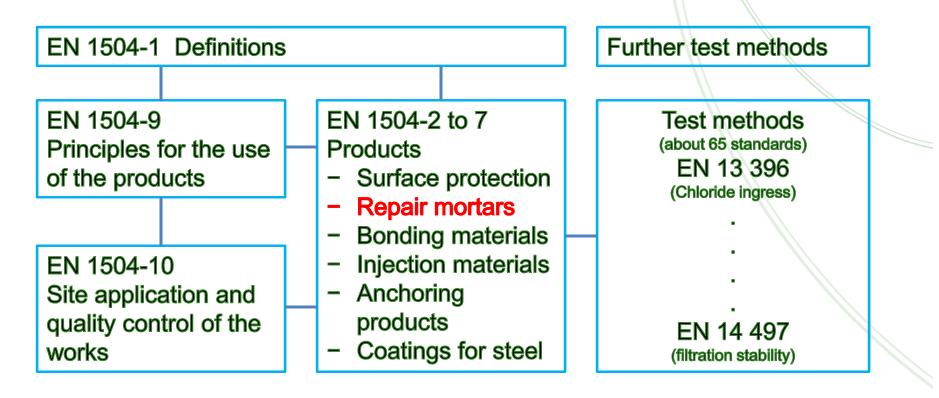

Content

- Introduction
- Current practice
 - Current procedure for repair
 - Relevant specifications
 - Market available products
- Causes of seaport repair failure
- Chemilink methodologies performance-based product design
- Our products under development for such applications
- Conclusions

Introduction


Seaport Road surface repair

- Tried many repair materials from market
- Last less than three months
- Traffic shut-down time for maintenance: 6 hours



Current Procedures for practical repair

Specifications for concrete repair EN 1504

EN 1504-8 Quality control of the products

The fields of application covered are in accordance with ENV 1504, part 9

Principle 3	Concrete restoration	Method 3.1	Applying mortar by hand	
		Method 3.2	Recasting with concrete	
		Method 3.3	Spraying mortar or concrete	
Principle 4	Structural strengthening	Method 4.4	Adding mortar or concrete	
Principle 7	Preserving or restoring	Method 7.1	Increasing cover to reinforcement passivity with passivity mortar or concrete	
		Method 7.2	Replacing contaminated concrete	

Performance characteristics of structural and non-structural

repair products_EN 1504, Part 3 – Structural and

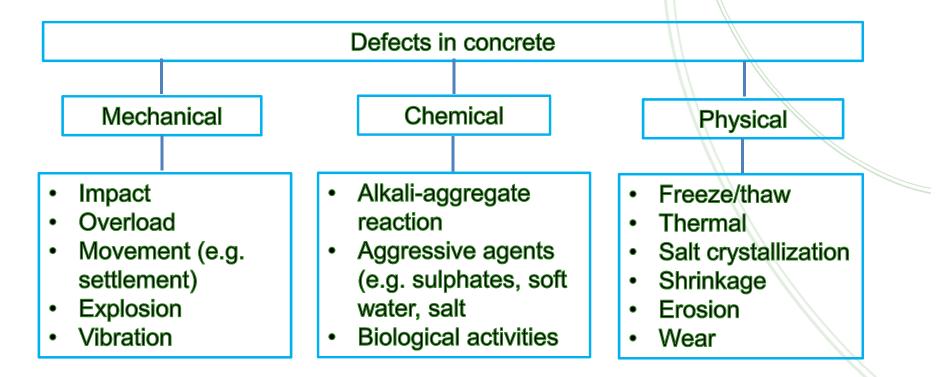
Non-Structural Repair of Concrete Structures

		Repair principle			
Performance	3	3	4	7	
characteristics		Repair method			
	3.1; 3.2	3.3	4.1	7.1; 7.2	
Compressive strength	•	•	•	•	
Chloride ion content	•	•	•	•	
Adhesive bond	•	•	•	•	
Restrained shrinkage / expansion	•	•	•	•	
Durability - carbonation resistance	•	•	•	•	
Durability - thermal compatibility					
freeze / thaw; thunder / shower; dry cycling					
Elastic modulus			•		
Skid resistance					
Coefficient of thermal expansion					
Capillary absorption (water permeability)					
 For all intended uses; For certain intended uses. 					

Performance requirements for cementitious structural and non-structural repair products

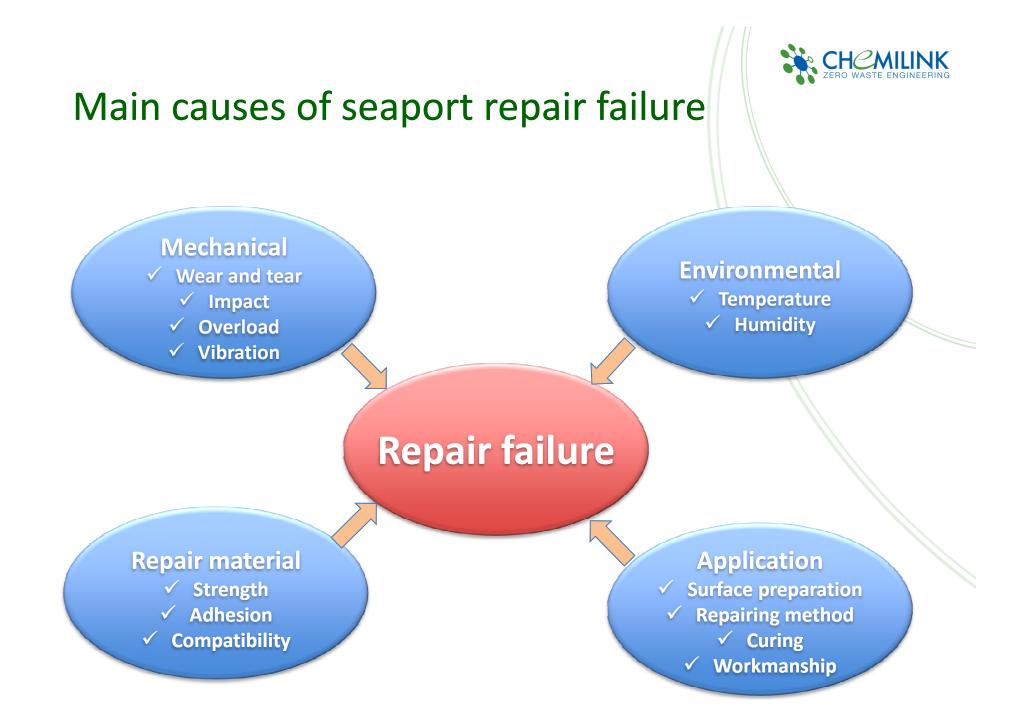
Performance	Requirement (Table 3 in EN 1504, part 3)				
characteristics	Structural		Non-Structural		
	Class R4	Class R3	Class R2	Class R1	
Compressive strength	≥ 45 MPa	≥ 25 MPa	≥ 15 MPa	≥ 10 MPa	
Chloride ion content	≤ 0.05%		≤ 0.05%		
Adhesive bond	≥ 2.0 MPa	≥ 1.5 MPa	≥ 0.8 MPa		
Restrained shrinkage / expansion	Bond strength after test			No requirement	
	≥ 2.0 MPa	≥ 1.5 MPa	≥ 0.8 MPa		
Durability - carbonation resistance	dk ≤ control concrete		No requirement		
Durability - thermal compatibility	Bond strength after 50 c	cycles		Visual inspection after 50 cycles	
freeze / thaw	≥ 2.0 MPa	≥ 1.5 MPa	≥ 0.8 MPa		
Durability - thermal compatibility	Bond strength after 30 cycles		Visual inspection		
thunder / shower	≥ 2.0 MPa	≥ 1.5 MPa	≥ 0.8 MPa	after 30 cycles	
Durability - thermal compatibility	Bond strength after 30 cycles			Visual inspection	
dry cycling	≥ 2.0 MPa	≥ 1.5 MPa	≥ 0.8 MPa	after 30 cycles	
Elastic modulus	≥ 20 Gpa	≥ 15 GPa	No requirement		
Skid resistance	Class I: > 40 units wet tested Class II: > 40 units dry tested		Class I: > 40 units wet tested Class II: > 40 units dry tested		
	Class III: > 55 units wet tested		Class III: > 55 units wet tested		
Capillary absorption	0.5 kg/m2.h0.5		0.5 kg/m2.h0.5	No requirement	

Market available products for such applications


P	roperties	Product A	Product B	Product C
Setting time (min)	Initial	20	15	11-14
(11111)	Final	40	20	15-17
	1 hour			10
	2 hour	20		
Compressive strength (MPa)	3 hour			25
	4 hour	40	25 (6 hrs)	
	24 hour	50	30	40
	3 days	55		45
	28 days	60	40	55
Flexural strength (MPa)	1 days		5	4
(1016)	28 days		10	5
Pull out bond strength (MPa)	7 days	> Tensile strength of concrete	/	1.5
	28 days	concrete	/	2.0
Fresh Wet Density (kg/m3)	(with 10mm aggregates)	2300	1900-2000	1980-2050

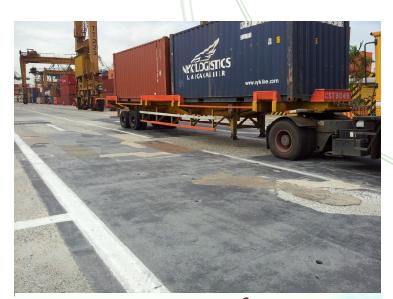
These market available products may satisfy the relevant specification, but may not perform well in a specific service environment

□ Chemilink[™] SS-123 is a fast setting non-shrinkage repair mortar and not recommended for this application


Common causes of concrete defects

Causes of seaport concrete defects

- Wear and Tear
- Impact
- Overload
- Vibration


- Thermal
- Shrinkage
- Erosion
- Wear

Causes of repair failure

Causes of repair failure

- High early strength
 - High modulus of elasticity
 - Low flexibility and toughness
 - Low cracking resistance
 - Susceptible to fracturing from impact loads

Causes of repair failure

Adhesion is mainly affected by:

- Repair material (Formulation design)
- Substrate surface preparation
 - Removal of concrete using violent means may cause damage to the substrate concrete that is Intended to remain in place and reduces the adhesion of repair materials
 - Selection of concrete removal techniques: effective, safe, economical, and less damage to the substrate concrete
- Substrate surface texture and moisture content

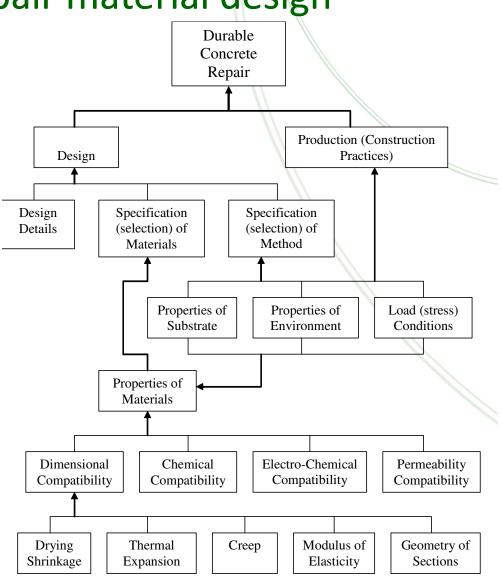
Causes of repair failure - General requirements for patch repair materials for compatibility

Repair material	Property	Relationship of repair material (R) to concrete substrate (C)	
Strength	Shrinkage strain	R < C	
Adhesion ✓ Compatibility	Creep coefficient (for repairs in compression)	R < C	
	Creep coefficient (for repairs in tension)	R > C	
	Thermal coefficient of expansion	R = C	
	Modulus of elasticity	R = C	
	Poisson's ratio	R = C	
	Tensile strength	R > C	
	Fatigue performance	R > C	
	Adhesion	R > C	
	Porosity & resistivity	R = C	
	Chemical reactivity	R < C	

CHCMILINK ZERO WASTE ENGINEERING

Repair Failure Process

- 1. Local Debond
 - Poor adhesion
 - Incompatibility with substrate
 - Wear and tear
 - Impact and vibration
- 2. Crack
 - Overload
 - Wear and tear
 - Impact and vibration
 - Differential shrinkage
 - Thermal shock
- 3. Pop-out
 - Impact and vibration
- 4. Debond and cracks in surrounding areas
 - Wear and tear
 - Impact and vibration

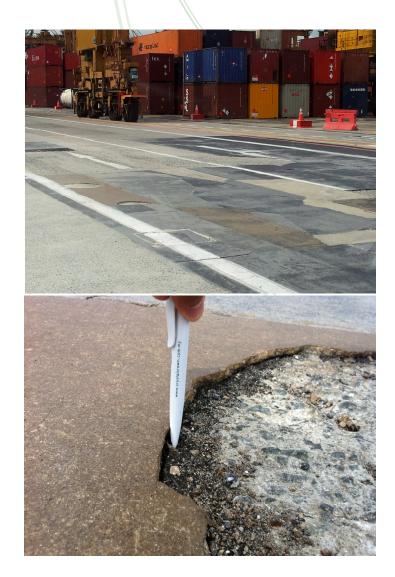


Chemilink methodologies Performance-based repair material design

Procedures for performance-based product design

- Case study
 - Site visit
 - Cause analysis
- Product design
 - Formulation design
 - Lab trial
 - Site trial
- Product launch

Our products under development


- Product Chemilink SS-132 for concrete surface repair/restoration
- Product Chemilink SS-132ST for concrete surface rejuvenation

Product Chemilink SS-132 for concrete surface and patch repair/restoration

Features

- Designed for thin section repair: 5-30mm
- High early strength: Minimum disruption to traffic (15-25MPa/2hrs)
- High final strength: suitable for high loading situations (35-50MPa/28days)
- High bond strength
- High impact resistance and crack resistance
- High abrasion and chemical resistance
- Package
 - Powder Part: 25 kg/bag
 - Liquid Part: 4kg/pail

Application trial of product Chemilink SS-132

- Prepare the repaired surface to a rough profile
- Pre-wetting the surface thoroughly
- Remove the standing water from the surface
- Mix and apply the repair mortar
- Load trial after two-hours curing
- No cracking, debonding and other defects were found after one month.

Product Chemilink SS-132ST for concrete surface rejuvenation

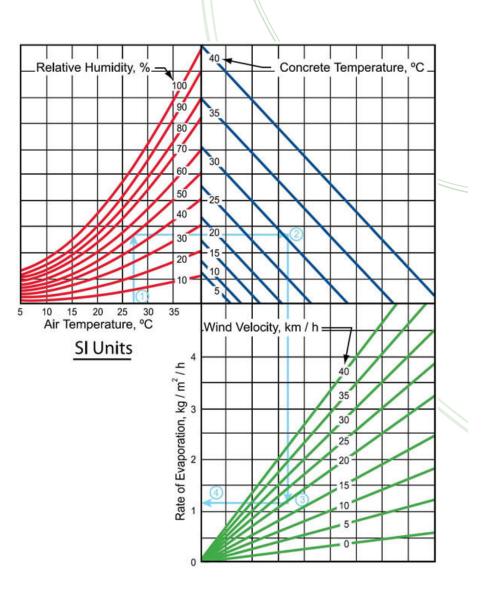
- Features
 - Specially designed for supper thin section repair: 3-5mm
 - High final strength: suitable for high loading situations
 - High bond strength
 - High impact resistance and crack resistance
 - High abrasion, erosion and chemical resistance
 - Good workability and easy to apply
- Package
 - Powder Part: 25 kg/bag
 - Liquid Part: 4.3 kg/pail

Clarifications

- High early strength? need to be back to service in 4-6 hours?
- 2. Durability? Expected to last how many years?
- 3. Color match to existing substrates?
- 4. Surface texture
- 5. Application method

Application trial of product Chemilink SS-132ST

- Clean the repaired surface
- Pre-wetting the surface thoroughly
- Remove the standing water from the surface
- Mix and apply the repair mortar
- Broom the surface for texture
- Curing for the first 48 hours
- No cracking, debonding and other defects were found.


Tips for successful surface repair

- Shrinkage and cracking control:
 - Thin, cementitious surface repairs are susceptible to plastic shrinkage cracking because their high surface-to-volume ratio promotes rapid evaporation under hot weather conditions in SEA
 - Also, because these materials usually have low water-cement ratios, there is little bleed water to replace evaporated water
 - It is recommended the placements to be done in the early morning or late at night to avoid weather conditions which will aggravate this drying
 - Prewetting the concrete substrate is recommended
- Adhesion enhancement
 - Roughening the substrate surface will enhance the bond
 - Intimate contact: Intimate contact can be achieved by vibration, pneumatic application, high fluidity, and troweling pressure
- The anti-slip *surface* texture can be obtained by stroking a *broom* over *freshly* placed *concrete*.
- Normal curing procedures should be applied for the first 24 to 48 hours

Estimating Evaporation Rates to Prevent Plastic Shrinkage Cracking

- To use these charts:
- Enter with air temperature and move *up* to relative humidity;
- Move *right* to concrete temperature;
- Move *down* to wind velocity; and
- Move *left* to read rate of evaporation

Conclusions

- Concrete surface repair is a system, and the success of the repair is affected by many factors, like load condition, environment, substrate preparation, performance of repair materials and workmanship
- Chemilink has the abilities to design and manufacture different repair materials based on their performance required

Thank You for Your Attention!

CHCMILINK ZERO WASTE ENGINEERING

About Bonding Agent

- Types of bonding agent: epoxy-based, latex-based and cement based
- Bonding agent is suitable for most non-structural repairs
- Application of the bonding agent to the prepared substrate must be done with care and must be timed to the placement of the repair material.
- Bonding agents applied to substrates may begin to set or cure prematurely creating a bond breaker with the new repair material.
- Bonding materials create a moisture barrier between the existing substrate and the repair material.
- Under certain conditions a moisture barrier could result in failure of the repair, when moisture is trapped in the concrete directly behind the moisture barrier.