27 May 2011 Engineering Auditorium, National University of Singapore, Singapore

Pavement Rehabilitation by In-Situ Recycling - A Case Study on Seaport Container Yard & Road

Tan, P. C., Daud, Lee, M. Dr Wu, D.Q.

Chemilink Technologies Group, Singapore

Contents

- 1. Introduction
- 2. Evaluation Criteria
- 3. In-Situ Stabilization Process & Technical Performances
- 4. Benefits of In-Situ Recycling in Environment Aspect
- **5.** Conclusions
- 6. Acknowledgements

1. Introduction

- * Due to weak and soft foundation, most of the seaports in this region experience substantial settlement issue over time
- * Northport (Port Klang) is one of the oldest seaport in Malaysia encountered serious differential settlement in most port facilities including container yards and internal roads
- * Maintenance and upgrading of G-Block Container Yard was conducted in 2010 to rectify differential settlement issue and upgrade the container stacking capacity

2. Evaluation Criteria

Major Considerations:

2-1 Structural Design & Reliability

2-2 Construction Speed and Timing

2-3 Cost Effectiveness

2-4 Environmental Impact

2-1 Structural Design & Reliability

□ High Loading

□ Sub-grade conditions – marine clay with high tidal level

□ Long term performances and reliability

Typical Container Stacking Section

2-2 Construction Speed

□ Higher construction unit rate

□ Shorter project duration

□ Safer construction activities

2. Evaluation Criteria

2-3 Cost Effectiveness

Overall Costs

□ Short Term Construction & related costs

□ Long Term Maintenance & related costs

2-4 Environmental Impact

□ Environment friendly

□ Less excavation and backfilling

□ Less ground movements caused by vehicles,

machines and manpower

□ Less port security control and coordination works

Typical Cross Section of Container Yard Rehabilitation

Final Pavement Design

Combination of Rigid Pavement and In-situ Recycling

Typical Cross Section of Container Yard Rehabilitation

Definition:

"Mixing proper chemicals with in-situ soils to improve/strengthen the soil properties through chemical reactions for engineering purposes."

Design requirements:

- \Box UCS \geq 2.0 MPa (7-d)
- \Box CBR \geq 120% (7-d)
- □ Compaction Degree \ge 95%

✤ 3 Major Steps

Step 1: Spreading

Step 2: In-Situ Mixing

Step 3: Compaction

Quality Control

Field Density Test

Re-mould UCS Test

Re-mould CBR Test

Quality Control – Chemilink SS-108/SS-111 Stabilization

Project: Proposed Development of RTG G-Block and Associated Work at Container Terminal 1 For Northport (Malaysia) Berhad.

Project Duration: June 2010-March 2011

Testing carried out by: Geolab(M) Sdn Bhd (Accredited Lab)

ST Canton

T & LINES

HEUNG-A

Stine .

First Phase in Operation

田村田

4. Benefits of In-Situ Recycling in the Environment Aspect

Benefits

- Better Technical Performances
- Cost Saving and Overall Cost Effectiveness
- Simpler and Faster Construction
- Less Materials Transportation
- Limited Disturbances to Port Operations
- Environment Friendly

4. Benefits of In-Situ Recycling in the Environment Aspect

Comparison Item	Conventional Replacement Method	In-Situ Recycling Method
Imported Material?	Yes Graded Aggregate	Yes Stabilizing Agent
Quantity of Imported Materials	58,650 ton	1380 ton
Construction Waste Created?	Yes	No
Quantity of Construction Waste	25,500 m ³	ZERO
Transportation Required	7,200 trips	69 trips

5. Conclusions

- 1) Rehabilitation of Northport G-Block container yard and roads were completed in mid 2011
- 2) Comprehensive project planning and methodology evaluation are critical for the smooth and on-time project completion
- 3) The In-situ Stabilization Method was adopted with significant advantages and benefits
- 4) Technical performance to-date is satisfactory

Acknowledgements

□ Northport (Malaysia) Bhd

□ Emenea Engineering Services Sdn Bhd

□ Trans Resources Corporation Bhd

□ MTS Construction Sdn Bhd

Thank You for Your Attention!

