The 7th Asia Pacific Conference on Transportation and the Environment, Semarang, Indonesia, 3 – 5 June 2010

GREEN APPROACH TO RURAL ROADS CONSTRUCTION – STABILIZATION OF IN-SITU SOILS AND CONSTRUCTION WASTES

Chemilink Technologies GroupMichael LeeTan Poi CheongDaudDr Wu Dong Qing

1. Introduction

Why Rural Road???

The Needs:

- Roads for Development
- Roads to Villages, and Resources
- Road to Economic

The Constraint:

- Lack of Resources
- Lack of Machineries
- Lacking of Transportation Network

1. Introduction

What is In-situ Chemical Soil Stabilization???

- Addition of PROPER stabilizing agent with in-situ materials
- Alter/improve the properties of in-situ materials
- Meet various engineering properties & requirements
- Function as structural component of the pavement

1. Introduction

Typical Construction Procedure

By Manual

By Rotovator

By Compactor

Pavement Structural Design

50mm of Surface Course (Asphalt Concrete) 200mm THK Base Course

(Crushed Aggregate)

Sub-Grade Course, CBR: 6%

Chemilink Design

Conventional Design

Chip Seal Surface Course

200mm THK Chemilink Stabilized Layer

(In-situ material)

Sub-Grade Course, CBR: 6%

Outline of Estimation on CO₂ Emission

- 1. Materials Production Stage
- 2. Materials and Machineries Transportation Stage
- 3. Rural Road Construction Stage
- 4. Waste Disposal Stage

Case Study – Estimation and Comparison on CO₂ Emission

- Two rural roads in Terengganu, Malaysia
- Constructed in December 2009
- Location: Kuala Besut
- Project Dimension: 1km length x 4m width (4000m²)

Emission stage		Quantity of materials	
		Conventional	Chemilink
		Method	Method
I. Material Production			
Surface layer	Bitumen	29.7 t	2.5 t
	Imported virgin aggregate	510.8 t	46.0 t
Base layer	Imported virgin aggregate	2208.0 t	NIL
	Soil stabilization agent	NIL	49 t
Total Quantity of materials		2721.7 t	97.5 t
II. Materials and Machiner	ies Transportation		
Diesel consumption (L) (Materials)		22584.0	2013.1
Diesel consumption (L) (Machineries)		92.0	52.6
III. Rural road construction	n		
Paving Work	Diesel consumption (L)	1063.2	587.3
IV. Waste Disposal			
Diesel consumption (L)		18142.0	0.0

Estimation on Amount of Materials Consumption

Emission Stage	Conventional Method	Chemilink Method
I. Material production	16.30	0.71
II. Material and Machineries Transportation	60.95	5.56
III. Rural road construction	2.90	1.58
IV. Waste Disposal	48.80	NIL
Total stage emissions (ton-CO₂)	128.95 ton	7.85 ton

Estimation on CO₂ Emission

3. Other Advantages Of Chemical Soil Stabilization

Better Technical Performance

- Higher & Wide Range of Strength CBR (7-D) from 30% to 300%
 UCS (7-D) from 0.7MPa to 5.0MPa
- Better volume stability under different temperature/ moisture condition
- Lower Permeability from 10⁻⁷ to 10⁻¹²m/s
- Forms Semi-Rigid Platform for effective load distribution

3. Other Advantages Of Chemical Soil Stabilization

Reduce Demands on Raw Backfilling Materials (Reduced Exploitation on Natural Resources)

Negligible amount of Foreign Materials

Minimize Creation of Construction Wastes

Faster Construction and Less Disturbance to Environment and Public

Overall Cost Effectiveness

Sustainable Recyclability

Highlight of Projects Adopted Chemical Stabilizing Agents Rural Roads Construction (2009), Terengganu Malaysia

During Construction

After Chemilink Stabilization

Highlight of Projects Adopted Chemical Stabilizing Agents Rural Roads Construction (2009), Terengganu Malaysia

Highlight of Projects Adopted Chemical Stabilizing Agents

Plantation Access Road Construction, Felda Sahabat 7 (2009), Malaysia

Before Chemilink Stabilization

After Chemilink Stabilization

Highlight of Projects Adopted Chemical Stabilizing Agents Rural Road Construction (2007), Tibet, China

Highlight of Projects Adopted Chemical Stabilizing Agents Oil Field Road Construction for Caltex (2003), Sumatra Indonesia

Subgrade Condition

Road in use after 3 months

Highlight of Projects Adopted Chemical Stabilizing Agents Changi International Airport Runway Widening (2004-2005), Singapore

Highlight of Projects Adopted Chemical Stabilizing Agents Sultan Ismail International Airport Runway/Taxiway Widening (2007-2008), Malaysia

completed runway wideing

Highlight of Projects Adopted Chemical Stabilizing Agents Jalan Tutong Widening Phase II & III (1997-1999), Brunei

Opened Road Cross Section

Road after 2-year completion

Highlight of Projects Adopted Chemical Stabilizing Agents Batamas Shipyard Construction (1997), Batam Indonesia

Spreading and Mixing

Compaction

5. Conclusion

- Importance and constraint of roads construction in rural area development
- By using in-situ chemical soil stabilization, carbon footprint can be reduced by 5-15 times
- In-situ chemical soil stabilization, an alternative approach of environment friendly, technical effective, cost efficient method to rural roads development

