

High Performance Topping Material for Semi-Rigid Pavement

Dr Wu Dong Qing

Chemilink Technologies Group, Singapore wu@chemilink.com.sg

Sun Dao Jun

Chemilink Technologies Group, Singapore daojun sun@chemilink.com.sg

Table of Contents

- 1. Introduction
- 2. Topping Materials
- 3. Composite and Components
- 4. Semi-Rigid Pavement
- 5. Application Procedures
- 6. Completed Projects (Examples)
- 7. Conclusions

1. Introduction

- ☐ As traffic intensity / frequency, axle loading and aircraft size continue to increase, so does the demand for improved airfield and road pavements to cater for the increasingly heavy wear and tear of the pavements.
- ☐ Challenges:
 - design and construction of durable, low-maintenance and economical pavements;
 - difficulty in scheduling the repair of concrete pavement, e.g. airports, seaports and road junctions (months of demolishing and strength development)
- □ Composite pavement as a wearing course:
 open AC + topping material = semi-rigid (days of work)

	1 •	ullet	• 1
Difficulties in	nradiicing 1	innning mai	reriaic
	producing	opping ma	cer rais.

For example:

- ☐ Flowability
- ☐ Strengths and Modulus
- ☐ Balance of the above two

ChemilinkTM SS-141

- ☐ High performance polymer modified cementitious material
 - High workability → Easy application
 - High early strength → Early opening to traffic
 - High long-term strength → Low maintenance
- ☐ Requires only the addition of water to produce a highly flowable mixture
- □ Result of extensive research work with the introduction of nano-technology.

2. Topping Materials

Properties		Test Methods	Typical Values of SS-141	
Workability (Flowability)		ASTM C939 • 10 ~ 14 second		
		JASS 15 [1]	• 200 ~ 250 mm	
Compressive Strength	12 hrs	EN 12190	• 20 ~ 30 MPa	
	1 day		• 55 ~ 70 MPa	
	7 days		• 85 ~ 100 MPa	
	28 days		• 115 ~ 140 MPa	
Flexural Strength at 28 days		EN 196	• 7 ~ 15 MPa	
Setting Time		EN 196	• 4 ~ 6 h (normal setting)	
			• 2 ~ 3 h (fast setting)	

^[1] Optional at the jobsite

2. Topping Materials

Comparison Items		SS-141 ^[1]	SS-141-A ^[2]	SS-141-B ^[3]
Workability (flow), sec		10 ~ 14	10 ~ 14	10 ~ 14
	12 hrs	25	10	< 5
Comp. Strength, MPa	1 day	60	50	15
	7 days	90	80	30
	28 days	130	110	40
Setting Time, hours	Normal	4 ~ 6	7 ~ 9	-
	Fast	2 ~ 3	-	2 ~ 3

^[1] typical values; [2] similar to Malaysian Standard; [3] similar to Singapore Standard.

Comparison of Topping Materials

Compressive Strength development with curing time at different w/s

3. Composite and Components

☐ Parallel Model (Iso-strain; upper bound):

$$E_c = E_1 V_1 + E_2 V_2$$

☐ Series Model (Iso-stress; lower bound):

$$\frac{1}{E_c} = \frac{V_1}{E_1} + \frac{V_2}{E_2}$$

 V_i = volume fraction of components 1 and 2

 E_i = modulus of components 1 and 2

 E_c = modulus of composite

$$\Sigma V_1 = 1$$
, e.g. $V_1 + V_2 = 1$

3. Composite and Components

Given V_{AC} , V_{m} and E_{AC} the same for different semirigid composites, E_{sr} increases as E_{m} increases for both parallel and series models.

$$E_{AC}V_{AC} + E_mV_m = E_{sr} \qquad \frac{V_{AC}}{E_{AC}} + \frac{V_m}{E_m} = \frac{1}{E_{sr}}$$

 \square Similarly, given V_{AC} , V_{m} and E_{m} the same, E_{sr} increases as E_{AC} increases

3. Composite and Components

High quality SS-141 topping material leads to

- ☐ high performance at initial stage
- ☐ high reliability of semi-rigid pavement
- ☐ further development of semi-rigid pavement when asphalt concrete technology advances

4. Semi-Rigid Pavement

Properties	Test Method	Semi-Rigid Pavement (SS-141 as topping)	
Compressive strength at 12 hrs		• 3 ~ 5 MPa	
Compressive strength at 1 day	EN 12190	• 6 ~ 8 MPa	
Compressive strength at 28 days		• 9 ~ 12 MPa	
Flexural strength at 28 days	EN 12190	• ≥ 3 MPa	
Modulus	ASTM D4123	• ≥ 6,500 MPa (at 25°C)	
Skid Resistance	ASTM E303	• ≥ 50 ~ 60 BPN	
Impermeability	DIN 18130	• impermeable	
Curing time	-	• 4 ~ 8 hours	

4. Semi-Rigid Pavement

Curing Age	Compressive strength (MPa) of semi-rigid pavement with different topping materials			
	SS-141	SS-141-A	SS-141-B	
12 hrs	3 ~ 5	0.5 ~ 2 [1]		
1 day	5 ~ 8	5 ~ 7	< 5 ^[2]	
7 days	8 ~ 10	7 ~ 10	-	
28 days	9 ~ 12	8 ~ 12	-	

^[1] or dependent on the properties of the open AC;

^[2] the strength of composite pavement is believed to be inadequate.

5. Application Procedures

Porous asphalt concrete

Mixing of SS-141

Flowability Check

Filling into porous asphalt concrete

Scraping

5. Application Procedures

Right after filling

Hardened surface

6. Completed Projects (Examples)

Singapore Changi Airport Apron 1 (2007)

6. Completed Projects (Examples)

Singapore Changi Airport Apron 2 (2007)

6. Completed Projects (Examples)

Heavy Loading Yard (Hanson, Singapore AC Plant, 2005)

7. Conclusions

- ☐ Demand for semi-rigid pavement due to increased heavy wear and tear of pavements and difficulty in scheduling the repair work
- □ ChemilinkTM SS-141 topping
 - Easy application (high flowability)
 - Early opening to traffic (high early strength)
 - Low maintenance (high long-term strength)
- ☐ Given the same asphalt concrete and the same mix proportion, a higher quality topping would yield a composite pavement of better performance

