High Performance Topping Material for Semi-Rigid Pavement **Dr Wu Dong Qing** Chemilink Technologies Group, Singapore wu@chemilink.com.sg Sun Dao Jun Chemilink Technologies Group, Singapore daojun sun@chemilink.com.sg ## Table of Contents - 1. Introduction - 2. Topping Materials - 3. Composite and Components - 4. Semi-Rigid Pavement - 5. Application Procedures - 6. Completed Projects (Examples) - 7. Conclusions ## 1. Introduction - ☐ As traffic intensity / frequency, axle loading and aircraft size continue to increase, so does the demand for improved airfield and road pavements to cater for the increasingly heavy wear and tear of the pavements. - ☐ Challenges: - design and construction of durable, low-maintenance and economical pavements; - difficulty in scheduling the repair of concrete pavement, e.g. airports, seaports and road junctions (months of demolishing and strength development) - □ Composite pavement as a wearing course: open AC + topping material = semi-rigid (days of work) | | 1 • | ullet | • 1 | |-----------------|--------------|-------------|-----------| | Difficulties in | nradiicing 1 | innning mai | reriaic | | | producing | opping ma | cer rais. | For example: - ☐ Flowability - ☐ Strengths and Modulus - ☐ Balance of the above two ## ChemilinkTM SS-141 - ☐ High performance polymer modified cementitious material - High workability → Easy application - High early strength → Early opening to traffic - High long-term strength → Low maintenance - ☐ Requires only the addition of water to produce a highly flowable mixture - □ Result of extensive research work with the introduction of nano-technology. # 2. Topping Materials | Properties | | Test Methods | Typical Values of SS-141 | | |------------------------------|---------|----------------------------|----------------------------|--| | Workability
(Flowability) | | ASTM C939 • 10 ~ 14 second | | | | | | JASS 15 [1] | • 200 ~ 250 mm | | | Compressive
Strength | 12 hrs | EN 12190 | • 20 ~ 30 MPa | | | | 1 day | | • 55 ~ 70 MPa | | | | 7 days | | • 85 ~ 100 MPa | | | | 28 days | | • 115 ~ 140 MPa | | | Flexural Strength at 28 days | | EN 196 | • 7 ~ 15 MPa | | | Setting Time | | EN 196 | • 4 ~ 6 h (normal setting) | | | | | | • 2 ~ 3 h (fast setting) | | ^[1] Optional at the jobsite # 2. Topping Materials | Comparison Items | | SS-141 ^[1] | SS-141-A ^[2] | SS-141-B ^[3] | |---------------------------|---------|-----------------------|-------------------------|-------------------------| | Workability (flow), sec | | 10 ~ 14 | 10 ~ 14 | 10 ~ 14 | | | 12 hrs | 25 | 10 | < 5 | | Comp.
Strength,
MPa | 1 day | 60 | 50 | 15 | | | 7 days | 90 | 80 | 30 | | | 28 days | 130 | 110 | 40 | | Setting
Time,
hours | Normal | 4 ~ 6 | 7 ~ 9 | - | | | Fast | 2 ~ 3 | - | 2 ~ 3 | ^[1] typical values; [2] similar to Malaysian Standard; [3] similar to Singapore Standard. ### **Comparison of Topping Materials** #### Compressive Strength development with curing time at different w/s ## 3. Composite and Components ☐ Parallel Model (Iso-strain; upper bound): $$E_c = E_1 V_1 + E_2 V_2$$ ☐ Series Model (Iso-stress; lower bound): $$\frac{1}{E_c} = \frac{V_1}{E_1} + \frac{V_2}{E_2}$$ V_i = volume fraction of components 1 and 2 E_i = modulus of components 1 and 2 E_c = modulus of composite $$\Sigma V_1 = 1$$, e.g. $V_1 + V_2 = 1$ ## 3. Composite and Components Given V_{AC} , V_{m} and E_{AC} the same for different semirigid composites, E_{sr} increases as E_{m} increases for both parallel and series models. $$E_{AC}V_{AC} + E_mV_m = E_{sr} \qquad \frac{V_{AC}}{E_{AC}} + \frac{V_m}{E_m} = \frac{1}{E_{sr}}$$ \square Similarly, given V_{AC} , V_{m} and E_{m} the same, E_{sr} increases as E_{AC} increases ## 3. Composite and Components High quality SS-141 topping material leads to - ☐ high performance at initial stage - ☐ high reliability of semi-rigid pavement - ☐ further development of semi-rigid pavement when asphalt concrete technology advances # 4. Semi-Rigid Pavement | Properties | Test Method | Semi-Rigid Pavement
(SS-141 as topping) | | |---------------------------------|-------------|--|--| | Compressive strength at 12 hrs | | • 3 ~ 5 MPa | | | Compressive strength at 1 day | EN 12190 | • 6 ~ 8 MPa | | | Compressive strength at 28 days | | • 9 ~ 12 MPa | | | Flexural strength at 28 days | EN 12190 | • ≥ 3 MPa | | | Modulus | ASTM D4123 | • ≥ 6,500 MPa (at 25°C) | | | Skid Resistance | ASTM E303 | • ≥ 50 ~ 60 BPN | | | Impermeability | DIN 18130 | • impermeable | | | Curing time | - | • 4 ~ 8 hours | | # 4. Semi-Rigid Pavement | Curing Age | Compressive strength (MPa) of semi-rigid pavement with different topping materials | | | | |------------|--|-------------|------------------------------|--| | | SS-141 | SS-141-A | SS-141-B | | | 12 hrs | 3 ~ 5 | 0.5 ~ 2 [1] | | | | 1 day | 5 ~ 8 | 5 ~ 7 | < 5 ^[2] | | | 7 days | 8 ~ 10 | 7 ~ 10 | - | | | 28 days | 9 ~ 12 | 8 ~ 12 | - | | ^[1] or dependent on the properties of the open AC; ^[2] the strength of composite pavement is believed to be inadequate. # 5. Application Procedures Porous asphalt concrete Mixing of SS-141 Flowability Check Filling into porous asphalt concrete Scraping # 5. Application Procedures Right after filling Hardened surface # 6. Completed Projects (Examples) ## Singapore Changi Airport Apron 1 (2007) # 6. Completed Projects (Examples) ## Singapore Changi Airport Apron 2 (2007) # 6. Completed Projects (Examples) #### **Heavy Loading Yard (Hanson, Singapore AC Plant, 2005)** ## 7. Conclusions - ☐ Demand for semi-rigid pavement due to increased heavy wear and tear of pavements and difficulty in scheduling the repair work - □ ChemilinkTM SS-141 topping - Easy application (high flowability) - Early opening to traffic (high early strength) - Low maintenance (high long-term strength) - ☐ Given the same asphalt concrete and the same mix proportion, a higher quality topping would yield a composite pavement of better performance