Soil Recycling for Pavements of Road and Airfield

Dr Wu Dong Qing
Grace Wen Jia

Chemilink Technologies Group Pte Ltd, Singapore
Table of Contents

1. Introduction
2. Soil Recycling by Chemical Stabilization Technology
3. Chemilink Applications in Road and Airfield
4. Advantages of Soil Recycling
5. Conclusions
6. References
1. Introduction

- Currently Singapore is facing the shortage of sands and stones for both civil and building construction.
- The costs have jumped to 3~4 times more.
- The costs may not be back to the previous ones even after this issue.
- Singapore needs the alternative ways like “New Water” case to overcome current difficulties.
- In-situ soil recycling is an effective and proven solution.
2. Soil Recycling by Chemical Stabilization Technology

* Definition:

“Mixing proper chemicals with in-situ soils to improve/strengthen the soil properties through chemical reactions for engineering purposes.”

* The selected chemical stabilizing agents, such as Chemilink products, have successfully been applied in Asia, especially in South-East Asia region for more than 10 years.

* Especially-designed various versions of Chemilink products have been used to stabilize:

- Clayey soils
- Sandy soils
- Crushed stones
- Their mixtures
2. Soil Recycling with Chemical Stabilization Technology

2-1. Introduction

In order to protect the natural environment, more or more “In-Situ” materials such as soils have to be used for road and airfield construction

- Chemical stabilization can strengthen the soils to meet the engineering requirements
- It has been proven all over the world that:

 Chemical stabilization with correct design and quality construction is technically durable and cost effective
2. Soil Recycling with Chemical Stabilization Technology

2-2. Dosage Design Criteria

* Dosage: Percentage of dry weight of soils to be stabilized

* Purpose: To achieve sufficient technical properties

* General Design Criteria for Road and Airfield:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Sub-base</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>0.75~1.5MPa</td>
<td>1.5~3.0MPa or more</td>
</tr>
<tr>
<td>CBR (optional)</td>
<td>≥30%</td>
<td>≥80~90%</td>
</tr>
<tr>
<td>MR (airfield)</td>
<td>≥3,000MPa</td>
<td></td>
</tr>
</tbody>
</table>

≥ denotes greater than or equal to.
2. Soil Recycling with Chemical Stabilization Technology

2-3. Application Method of Chemical Stabilization

2-3-1 In-situ Recycling Method

Mechanical Spreading
Mixing by Stabilizer
Compaction 1

Manual Spreading
Mixing by Rotorvator
Compaction 2
2. Soil Recycling with Chemical Stabilization Technology

2-3. Application Method of Chemical Stabilization

2-3-2 Central-Plant Mixing Method

Central Mixing Plant and the Mixture after Compaction
3. Chemilink Applications in Road and Airfield

3-1. Road in Swampy Area (Brunei, 1995)

a) Stabilized Samples
b) Stabilized Road (on the left) vs. Old Road
c) Stabilized Surface after 10 Years
3. Chemilink Applications in Road and Airfield

3-2. Shipyard Project (Indonesia, 1997)

a) Manually Spreading and Mechanically Mixing

b) Compaction
3. Chemilink Applications in Road and Airfield

3-3. Highway-Design Project (Brunei, 1999)
3. Chemilink Applications in Road and Airfield

3-3. Highway-Design Project (Brunei, 1999)

a) Opened Road Cross Section

b) Road after 7-Yr Completion
3. Chemilink Applications in Road and Airfield

3-3. Widening of Jalan Tutong, Phase III (Brunei)
3. Chemilink Applications in Road and Airfield

3-4. Low-Cost Rural Road (Inner Mongolia, China, 2002)

* 0.2m as Base only / 3% SS-108 with Clayey Silt / Surface AC: 40mm

Road after Years
3. Chemilink Applications in Road and Airfield

3-4. Low-Cost Rural Road (Inner Mongolia, China, 2002)

* Low Temperature (~ - 30°C)

Chemilink Stabilized Base after Years
3. Chemilink Applications in Road and Airfield

3-5. New Well Road for Caltex, Sumatra, Indonesia

*0.2m deep as Base only /1% SS-108 /No AC Surface

The Sub-grade

Spreading – big bag
3. Chemilink Applications in Road and Airfield

3-5. Caltex Oil-Field Road (Indonesia, 2003)

*0.2m as Base only / 1% SS-108 / No AC Surface

The Road in Use
3. Chemilink Applications in Road and Airfield

3-5. Runway Widening Project (Singapore, 2005)

<table>
<thead>
<tr>
<th>Construction Steps</th>
<th>Construction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runway Closure</td>
<td></td>
</tr>
<tr>
<td>Excavation</td>
<td></td>
</tr>
<tr>
<td>Spreading</td>
<td></td>
</tr>
<tr>
<td>Mixing</td>
<td></td>
</tr>
<tr>
<td>Compaction</td>
<td></td>
</tr>
<tr>
<td>Paving AC</td>
<td></td>
</tr>
</tbody>
</table>

Construction Schedule for Runway Widening at Singapore Changi Airport

<table>
<thead>
<tr>
<th>Time</th>
<th>12pm</th>
<th>1am</th>
<th>2am</th>
<th>3am</th>
<th>4am</th>
<th>5am</th>
<th>6am</th>
<th>7am</th>
<th>8am</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:
Runway Closure Time: 1:00am ~ 7:00am
Effective Construction Time: 2:00am ~ 6:00am
Average Area per 4 Working Hours: 250m by 4.5m or 225m2/hour

Typical Construction Procedure
3. Chemilink Applications in Road and Airfield

3-6. Runway Widening Project (Singapore, 2005)

Excavation

Spreading
3. Chemilink Applications in Road and Airfield

3-6. Runway Widening Project (Singapore, 2005)

In-Situ Mixing

Compaction
3. Chemilink Applications in Road and Airfield

3-6. Runway Widening Project (Singapore, 2005)

Paving Asphalt Concrete

Completion of Widening
3. Chemilink Applications in Road and Airfield

3-5. Runway Widening Project (Singapore, 2005)

UCS and CBR Testing Results for Runway-I and Runway-II

UCS = 0.8e^{0.0063CBR}

Ave. UCS = 3.1 MPa
Ave. CBR = 219.0%
3. Chemilink Applications in Road and Airfield

3-5. Runway Widening Project (Singapore, 2005)

Runway-II
(after 17 Months)
3. Chemilink Applications in Road and Airfield

3-5. Runway Widening Project (Singapore, 2005)

Runway-I
(after 14 Months)
4. Advantages of Soil Recycling

4-1. General Comparison between Soil Recycling and Conventional Method for Roads

<table>
<thead>
<tr>
<th>Comparison Items</th>
<th>Conventional Method</th>
<th>Chemilink Soil Recycling</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>On good sub-grade</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>On swampy or weak sub-grades</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Applicable soil types</td>
<td>-</td>
<td>Normal soils</td>
<td>Special or difficult soil conditions can be treated after R&D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Such as sandy, silty and clayed soils</td>
<td></td>
</tr>
</tbody>
</table>
4. Advantages of Soil Recycling

4-1. General Comparison between Soil Recycling and Conventional Method for Roads

4-1-2. Impact to Environments

<table>
<thead>
<tr>
<th>Comparison Items</th>
<th>Conventional Method</th>
<th>Chemilink Soil Recycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantities of quarry materials required</td>
<td>Very high</td>
<td>Low or limited or none</td>
</tr>
<tr>
<td>Non-toxic environmental safe and stable</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Disturbances to public</td>
<td>More</td>
<td>Less</td>
</tr>
</tbody>
</table>
4. Advantages of Soil Recycling

4-1. General Comparison between Soil Recycling and Conventional Method for Roads

4-1-3. Construction

<table>
<thead>
<tr>
<th>Comparison Items</th>
<th>Conventional Method</th>
<th>Chemilink Soil Recycling</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Medium to high</td>
<td>Low</td>
<td>Refer to “Cost Comparison”</td>
</tr>
<tr>
<td>Speed</td>
<td>Slow (e.g. 100m /day/layer/team)</td>
<td>Fast (e.g. 500m to 1km /day/layer/team)</td>
<td>Same as above</td>
</tr>
</tbody>
</table>
4. Advantages of Soil Recycling

4-1. General Comparison between Soil Recycling and Conventional Method for Roads

4-1-4. Performances

<table>
<thead>
<tr>
<th>Comparison Items</th>
<th>Conventional Method</th>
<th>Chemilink Stabilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing capacities under soaking</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Differential settlements</td>
<td>Big</td>
<td>Small</td>
</tr>
<tr>
<td>Water resistance</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Maintenance required</td>
<td>More</td>
<td>Less</td>
</tr>
<tr>
<td>Road durability</td>
<td>Short</td>
<td>Long</td>
</tr>
</tbody>
</table>
4. Advantages of Soil Recycling

4-2. Example of Direct Cost Analysis

- **Base:** 250mm thick
- **Estimated Direct Cost Comparison**

<table>
<thead>
<tr>
<th>No</th>
<th>Graded Stone Unit Price (S$/t, C&F-Singapore)</th>
<th>Graded Stone Base (S$/m²)*</th>
<th>Stabilized Soil Base (S$/m²)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>18.4</td>
<td>< 20</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>24.2</td>
<td>< 20</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>41.4</td>
<td>< 20</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>44</td>
<td>< 20</td>
</tr>
</tbody>
</table>

* Including local handling charges: S$12/t; ** For Soil-recycling specialist contractor only

- **Indirect Overcall Cost Saving including:**

 * Shorter construction period; * Lesser impacts to environment and public traffic; * Better technical performances; ……
5. Conclusions

1) Singapore is facing difficulties in supply of sands and stones for construction and thus there is a demanding for alternatives.

2) Soil recycling by chemical stabilization technology is a proven and effective alternative for both short-term and long-term.
5. Conclusions

3) More than 10 years practice of Chemilink Soil Stabilization Technology has proven that recycling various soils and stones for both road and airfield construction is an effective engineering method technically and commercially.

4) The recycling of soils has significant advantages and benefits, which can deliver superior quality roads and runways in a shorter time and with overall cost effectiveness.
6. Reference

6. Reference

Thank You for Your Attention!